MobyDeep: A lightweight CNN architecture to configure models for text classification
نویسندگان
چکیده
Nowadays, trends in deep learning for text classification are addressed to create complex models deal with huge datasets. Deeper usually based on cutting edge neural network architectures, achieving good results general but demanding better hardware than shallow ones. In this work, a new Convolutional Neural Network (CNN) architecture (MobyDeep) tasks is proposed. Designed as configurable tool, resultant (MobyNets) able manage big corpora sizes under low computational costs. To achieve those milestones, the was conceived produce lightweight models, having their internal layers proposed convolutional block. That block designed and customized by adapting ideas from image processing, helping squeezing model reduce The also residual network, covering functions extending up 28 layers. Moreover, middle were optimized connections, remove fully connected top resulting Fully CNN. Corpus chosen recent literature, aiming define real scenarios when comparing configured MobyDeep other state-of the-art works. Thus, three 8, 16 respectively, offering competitive accuracy results.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولLightweight Random Indexing for Polylingual Text Classification
Multilingual Text Classification (MLTC) is a text classification task in which documents are written each in one among a set L of natural languages, and in which all documents must be classified under the same classification scheme, irrespective of language. There are two main variants of MLTC, namely Cross-Lingual Text Classification (CLTC) and Polylingual Text Classification (PLTC). In PLTC, ...
متن کاملCSaRUS-CNN at AMIA-2017 Tasks 1, 2: Under Sampled CNN for Text Classification
Most practical text classification tasks in natural language processing involve training sets where the number of training instances belonging to each of the classes are not equal. The performance of the classifier in such a case can be affected by the sampling strategies used in training. In this work, we describe a cost sensitive and random undersampling variants of convolutional neural netwo...
متن کاملLearning Predictive Models to Configure Planning Portfolios
One of the latest advances for solving classical planning problems is the development of new approaches such as portfolios of planners. In a portfolio, different base planners are run sequentially to solve a problem. Therefore, the main challenge of a portfolio planner is to define what base planners to run, in what order, and for how long. This configuration can be created manually or automati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge Based Systems
سال: 2022
ISSN: ['1872-7409', '0950-7051']
DOI: https://doi.org/10.1016/j.knosys.2022.109914